首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49605篇
  免费   6697篇
  国内免费   10486篇
化学   49076篇
晶体学   650篇
力学   1878篇
综合类   358篇
数学   1716篇
物理学   13110篇
  2024年   51篇
  2023年   651篇
  2022年   1020篇
  2021年   1593篇
  2020年   2443篇
  2019年   1912篇
  2018年   1867篇
  2017年   2023篇
  2016年   2331篇
  2015年   2258篇
  2014年   2975篇
  2013年   4649篇
  2012年   3077篇
  2011年   3532篇
  2010年   2746篇
  2009年   3141篇
  2008年   3236篇
  2007年   3532篇
  2006年   3251篇
  2005年   3009篇
  2004年   2703篇
  2003年   2455篇
  2002年   1751篇
  2001年   1393篇
  2000年   1351篇
  1999年   1070篇
  1998年   911篇
  1997年   871篇
  1996年   731篇
  1995年   700篇
  1994年   619篇
  1993年   491篇
  1992年   466篇
  1991年   337篇
  1990年   239篇
  1989年   228篇
  1988年   183篇
  1987年   124篇
  1986年   99篇
  1985年   131篇
  1984年   91篇
  1983年   48篇
  1982年   79篇
  1981年   62篇
  1980年   48篇
  1979年   45篇
  1977年   38篇
  1976年   50篇
  1974年   42篇
  1973年   37篇
排序方式: 共有10000条查询结果,搜索用时 27 毫秒
101.
Herein we report a versatile Mizoroki–Heck-type photoinduced C(sp3)−N bond cleavage reaction. Under visible-light irradiation (455 nm, blue LEDs) at room temperature, alkyl Katritzky salts react smoothly with alkenes in a 1:1 molar ratio in the presence of 1.0 mol % of commercially available photoredox catalyst without the need for any base, affording the corresponding alkyl-substituted alkenes in good yields with broad functional-group compatibility. Notably, the E/Z-selectivity of the alkene products can be controlled by an appropriate choice of photoredox catalyst.  相似文献   
102.
A zwitterionic heterocyclic boronic acid based on 4-isoquinolineboronic acid (IQBA) exhibits the highest reported binding affinity for sialic acid or N-acetylneuraminic acid (Neu5Ac, K=5390±190 m −1) through the formation of a cyclic boronate ester complex under acidic conditions (pH 3). This anomalous pH-dependent binding enhancement does not occur with common neutral saccharides (e.g., glucose, fructose, sorbitiol), because it is mediated via selective complexation to a α-hydroxycarboxylate moiety forming a stable ion pair and ternary complex with Neu5Ac in phosphate buffer. IQBA expands biorecognition beyond classical vicinal diols under neutral or alkaline buffer conditions, which enables the direct analysis of Neu5Ac by native fluorescence with sub-micromolar detection limits.  相似文献   
103.
Yanmin Yu 《Molecular physics》2019,117(9-12):1360-1366
ABSTRACT

Potential energy surfaces and molecular dynamics of the intramolecular 1, 3-dipolar cycloaddition and ene reaction of a nitrile oxide with an alkene were performed in the gas phase and in dichloromethane with density functional theory. One hundred trajectories were propagated in the gas phase and in dichloromethane, respectively. Twenty percent of the trajectories in the gas phase involve bicyclic intermediate and the mean time gap is 472fs. A dynamically stepwise reaction is observed. In dichloromethane, more reactive trajectories were obtained and the time gap is larger than that in the gas phase.  相似文献   
104.
Elastic scattering angular distributions and total reaction cross-sections of ~(7,10,11,12)Be projectiles are predicted by the systematic ~9 Be global phenomenological optical model potential for target mass numbers ranging from24 to 209. These predictions provide a detailed analysis by their comparison with the available experimental data.Furthermore, these elastic scattering observables are also predicted for some targets out of the mass number range.The results are in reasonable agreement with the existing experimental data, and they are presented in this study.  相似文献   
105.
The Mills reaction and cyclization of readily available 2-aminobenzyl alcohols and nitrosobenzenes using thionyl bromide provided 2H-indazoles in up to 88 % yields. In the metal-free process, acetic acid played a crucial role for the both Mills reaction and cyclization. A brominated 2H-indazole could also be obtained through the one-pot sequence.  相似文献   
106.
A micromolar concentration of zinc has been shown to significantly change the dynamics of exocytosis as well as the vesicle contents in a model cell line, providing direct evidence that zinc regulates neurotransmitter release. To provide insight into how zinc modulates these exocytotic processes, neurotransmitter release and vesicle content were compared with single cell amperometry and intracellular impact vesicle cytometry with a range of zinc concentrations. Additionally, time-of-flight secondary ion mass spectrometry (ToF-SIMS) images of lipid distributions in the cell membrane after zinc treatment correlate to changes in exocytosis. By combining electrochemical techniques and mass spectrometry imaging, we proposed a mechanism by which zinc changes the fusion pore and the rate of neurotransmitter release by changing lipid distributions and results in the modulation of synaptic strength and plasticity.  相似文献   
107.
The design and development of non-noble metal alternatives with superior performance and promising long-term stability that is comparable or even better than those of noble-metal-based catalysts is a significant challenge. Here, we report the thermal-induced phase engineering of non-noble-metal-based nanowires with superior electrochemical activity and stability for the methanol oxidation reaction (MOR) under alkaline conditions. The optimized Cu–Ni nanowires deliver an unprecedented mass activity of 425 mA mg−1, which is 4.3 times higher than that of the untreated one. Detailed catalytic investigations show that the enhanced performance is due to the large active area, the increased number of active sites (NiOOH), and fast methanol electrooxidation kinetics. In addition, the generated hollow feature in the nanowires provides a unique void space to release the volume expansion, where the activity can be maintained for 5 h without a distinct activity decay. The present work emphasizes the importance of precisely phase modulating of nanomaterials for the design of non-noble metal electrocatalysts towards the MOR, which opens up a new pathway for the design of cost-effective electrocatalysts with promising activity and long-term stability.  相似文献   
108.
Polyoxometalates (POMs) are promising catalysts for the electrochemical hydrogen production from water owing to their high intrinsic catalytic activity and chemical tunability. However, poor electrical conductivity and easy detachment of the POMs from the electrode cause significant challenges under operating condition. Herein, a simple one-step hydrothermal method is reported to synthesize a series of Dexter–Silverton POM/Ni foam composites (denoted as Ni M -POM/Ni; M =Co, Zn, Mn), in which the stable linkage between the POM catalysts and the Ni foam electrodes lead to high activity for the hydrogen evolution reaction (HER). Among them, the highest HER performance can be observed in the NiCo-POM/Ni, featuring an overpotential of 64 mV (at 10 mA cm−2, vs. reversible hydrogen electrode), and a Tafel slope of 75 mV dec−1 in 1.0 m aqueous KOH. Moreover, the NiCo-POM/Ni catalyst showed a high faradaic efficiency ≈97 % for HER. Post-catalytic of NiCo-POM/Ni analyses showed virtually no mechanical or chemical degradation. The findings propose a facile and inexpensive method to design stable and effective POM-based catalysts for HER in alkaline water electrolysis.  相似文献   
109.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
110.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号